Speeds of Sound, Isentropic Compressibilities, and Excess Volumes of Binary Mixtures. 2. Mono-*n*-alkylamines with Cyclohexane and Benzene

Shantilal Oswal* and Ashok T. Patel

Department of Chemistry, South Gujarat University, Surat 395 007, India

Isentropic compressibilities $K_{\rm S}$, excess isentropic compressibilities $K_{\rm S}^{\rm E}$, and excess volumes $V^{\rm E}$ have been determined from the densities ϱ and speeds of sound U for 10 binary mixtures of (butylamine, hexylamine, octylamine, decylamine, or dodecylamine + cyclohexane or + benzene) at 303.15 K. The relative magnitude and sign of $V^{\rm E}$ and $K_{\rm S}^{\rm E}$ have been interpreted in terms of molecular interactions.

Introduction

As a part of our systematic study of the thermodynamic, transport, and acoustic properties of binary liquid mixtures containing alkylamines (1-7), in the previous paper (8) we reported isentropic compressibilities $K_{\rm S}$, excess isentropic compressibilities $K_{\rm S}^{\rm E}$, and excess volumes $V^{\rm E}$ for eight binary mixtures of tri-n-alkylamines with cyclohexane

Table 1. Densities and Refractive Indices at 298.15 K, Thermal Expansion Coefficients, and Isobaric Molar Heat Capacities of Pure Liquids at 303.15 K

	<i>Q</i> /(kg ·m ^{−3})			nD	 α/	$\frac{C_{P}}{(J\cdot K^{-1}\cdot$
liquid	exptl	lit.	exptl	lit.	kK^{-1}	mol^{-1})
cyclohexane	773.90	773.89ª	1.4236	1.423 54ª	1.233 ^b	136.8 ^a
benzene	873.62	873.60^{a}	1.4979	$1.497 \ 92^a$	1.233^{b}	158.1^{a}
butylamine	733.23	733.08^{c} 734.52^{d}	1.3997	1.398 75°	1.319⁄	190.7ª
hexylamine	761.20	760.70 ^g	1.4160	1.416 11 ^e	1.068^{f}	247.5^{h}
octylamine	779.35	778.90^{i}	1.4271	$1.427 \ 03^{e}$	0.967^{f}	304.3^{h}
decylamine dodecylamine	794.7	791.2≇	$1.4345 \\ 1.4377$	1.434 80 ^e 1.437 36 ^e	0.909 ^f 0.872 ^f	361.0^{h} 417.8^{h}

^a Reference 9. ^b Reference 23. ^c Reference 11. ^d Reference 12. ^e Reference 13. ^f Derived from densities in refs 24 and 25. ^g Reference 14. ^h Estimated by the Missenard group contribution method, ref 26. ⁱ Reference 15.

Figure 1. Dependence of isentropic compressibility on mole fraction for cyclohexane + alkylamines at 303.15 K. Experimental points: \bigcirc , C₄H₉NH₂; \triangle , C₆H₁₃NH₂; \square , C₈H₁₇NH₂; \blacksquare , C₁₀H₂₁NH₂; \bullet , C₁₂H₂₅NH₂; solid lines, calculated with eq 9.

Figure 2. Dependence of isentropic compressibility on mole fraction for benzene + alkylamines at 303.15 K. Symbols as in legend to Figure 1.

Figure 3. Dependence of excess volume on mole fraction at 303.15 K for mixtures of cyclohexane with alkylamines. Experimental points: \bigcirc , C₄H₉NH₂; \triangle , C₆H₁₃NH₂; \square , C₈H₁₇NH₂; **■**, C₁₀H₂₁NH₂; **●**, C₁₂H₂₅NH₂; solid lines, calculated with eq 10.

 (C_6H_{12}) and benzene. In this paper, we report isentropic compressibilities K_s , excess isentropic compressibilities K_s^E , deviations in the speed of sound ΔU , and excess

Figure 4. Dependence of excess volume on mole fraction at 303.15 K for mixtures of benzene with alkylamines. Symbols as in legend to Figure 3.

Figure 5. Dependence of excess isentropic compressibility on mole fraction at 303.15 K for mixtures of cyclohexane with alkylamines. Symbols as in legend to Figure 3.

Figure 6. Dependence of excess isentropic compressibility on mole fraction at 303.15 K for mixtures of benzene with alkylamines. Symbols as in legend to Figure 3.

volumes $V^{\rm E}$ determined from the measurements of densities ϱ and speeds of sound U for 10 binary mixtures of butylamine (C₄H₉NH₂), hexylamine (C₆H₁₃NH₂), octylamine (C₈H₁₇NH₂), decylamine (C₁₀H₂₁NH₂), and dodecylamine (C₁₂H₂₅NH₂) with cyclohexane (C₆H₁₂) and benzene (C₆H₆) at 303.15 K.

Figure 7. Variation of equimolar $V^{\mathbb{E}}$ at 303.15 K with the number of carbon atoms C_n in the alkylamine: (a) \bigcirc , cyclohexane + alkylamine; (b) \triangle , benzene + alkylamine.

Figure 8. Variation of equimolar $K_{\rm S}^{\rm E}$ at 303.15 K with the number of carbon atoms C_n in the alkylamine; (a) \bigcirc , cyclohexane + alkylamines; (b) \triangle , benzene + alkylamine.

Experimental Section

Cyclohexane (Fluka, AG) and benzene (BDH, AR), of purity better than 99.8%, butylamine (Fluka, AG), hexylamine (Fluka, AG), and octylamine (Fluka, AG), of purity better than 99%, were used. Decylamine and dodecylamine were of research grade form Sisco Research Laboratory Ltd., Bombay. C_6H_{12} was dried over type 4A molecular sieves and fractionally distilled twice over sodium metal pieces. C_6H_6 was shaken with H_2SO_4 to remove traces of thiophene (9) and washed with NaHCO₃ and distilled water. It was dried over sodium prior to distillation. All the amines were kept over sodium and fractionally distilled three times (10). The purities of all the liquid samples were ascertained by the constancy of their boiling points, and also from their density and refractive index values which agreed as shown in Table 1 with the literature values (9-15). The estimated purities (as tested by gas-liquid chromatographic analysis) of C₆H₁₂ and C₆H₆ were better than 99.9 mol % while those of amines were better than 99.5 mol %.

Mixtures were prepared by weighing the liquids in ground stoppered weighing bottles taking due precaution to minimize the evaporation losses. All the weighings were performed on an electronic balance (Mettler AE 163, Switzerland) accurate to 0.01 mg. The possible error in the mole fraction is estimated to be lower than $\pm 2 \times 10^{-4}$.

The speeds of sound U in the pure liquids and the binary mixtures were measured with a single crystal multifrequency ultrasonic interferometer (supplied by Mittal Enterprise, New Delhi). In the present work, a steel cell fitted with a quartz crystal of 2 MHz frequency was employed. Densities ϱ were measured using a fine capillary singlestem calibrated pycnometer. The temperature was controlled to ± 0.02 K by water thermostats. The details of

Table 2. Properties of Cyclohexane (1) or Benzene (1) + Alkylamine (2) at 303.15 K

			V ^E /(cm ³ .						$V^{E/(cm^{3})}$		
x_1	$U/(\text{m}\cdot\text{s}^{-1})$	$K_{\rm S}/{\rm TPa^{-1}}$	mol ⁻¹)	$K_{ m S}^{ m E}/{ m TPa^{-1}}$	$\Delta U/(\text{m}\cdot\text{s}^{-1})$	x_1	$U/(\text{m}\cdot\text{s}^{-1})$	$K_{\rm S}/{\rm TPa^{-1}}$	mol^{-1})	$K_{ m S}^{ m E}/{ m TPa}^{-1}$	$\Delta U/({ m m\cdot s^{-1}})$
	· · · · ·			Cva	lohexane (1)	+ Butylar	mine (2)	· · · · · · · · ·			
0.0000	1227	912		ejt		0.7003	1203	919	0.810	42	-24
0.1009	1218	922	0.280	15	8	0.7863	1207	908	0.693	36	-21
0.3012	1208	930	0.660	32	-18	0.8993	1217	885	0.409	20	-12
0.4982	1201	932	0.848	45	-25	1.0000	1230	859	0.100		
0.5729	1200	930	0.867	46	-26	2.00000	1200	000			
		• • • •			1-1		(0)				
0 0000	1000	700		Cyc	Ionexane (1)	+ Hexylan	mine (2)	070	0.070	90	15
0.0000	1286	799	0.100	-	-	0.6964	1227	873	0.678	26	-15
0.1064	1274	814	0.196	7	-5	0.7966	1226	873	0.575	20	-11
0.2992	1257	836	0.480	14	-9	0.8980	1225	871	0.356	14	-8
0.4953	1241	806	0.678	21	-12	1.0000	1230	859			
0.5974	1232	868	0.716	26	-15						
				Cyc	clohexane (1)	+ Octylar	nine (2)				
0.0000	1327	733		-		0.5993	1258	823	0.642	14	-8
0.0971	1316	746	0.131	2	-1	0.6975	1250	834	0.616	12	-6
0.1959	1304	761	0.278	5	-3	0.7993	1242	844	0.496	9	-4
0.2997	1292	777	0.421	8	-5	0.8960	1236	852	0.307	5	-2
0.4010	1280	793	0.540	11	-6	1.0000	1230	859			
0.4970	1269	808	0.611	13	-7						
				<i>C</i>	laborana (1)	Decular					
0 0000	1050	600		Cyc	ionexane (1)	+ Decylar	nine(2)	700	0.000		
0.0000	1350	098	0.070	-	1	0.0870	1284	782	0.606	-1	4
0.2000	1328	724	0.279	-1	1	0.7947	1200	822	0.502	-1	2
0.3987	1306	752	0.506	-1	2	1.0000	1230	859			
0.5065	1295	161	0.580	-2	4						
				Cycl	ohexane (1) +	- Dodecyla	amine (2)				
0.0000	1380	661				0.6032	1305	752	0.578	-7	9
0.2093	1358	686	0.258	-3	4	0.8037	1269	802	0.506	-5	6
0.3927	1335	713	0.438	-5	6	1.0000	1230	859			
0.5029	1320	732	0.544	-6	8						
				ч	$enzene(1) \pm$	Butulami	$\mathbf{n}_{\mathbf{a}}(2)$				
0.0000	1997	019		Б	enzene (1) +	0 6051	1949	706	0.970	0	٥
0.0000	1227	912	0.078	0	0	0.0001	1240	750	0.270	2	0
0.0374	1039	875	0.078	0	1	0.7555	1201	790	0.215	2	0
0.1314	1232	845	0.141	1	1	1 0000	1205	704	0.137	T	0
0.0000	1207	817	0.219	1	1	1.0000	1215	104			
0.0007	1240	017	0.202	T	I						
				В	enzene(1) +	Hexylami	ne (2)				
0.0000	1286	799				0.6955	1272	752	0.339	4	-1
0.1050	1283	794	0.083	1	0	0.7954	1273	739	0.269	3	0
0.2983	1279	783	0.230	1	0	0.8997	1275	723	0.167	2	0
0.4910	1275	770	0.325	2	0	1.0000	1279	704			
0.5946	1273	762	0.342	3	-1						
				Р	enzene(1) +	Octulami	ne (2)				
0 0000	1327	733		L		0 6967	1288	732	0.390	5	-2
0.0000	1321	735	0.108	2	1	0.0007	1284	796	0.348	3	-1
0.1044	1311	736	0.103	2	-1	0.1000	1280	719	0.040	3	_1
0.0001	1300	735	0.244	2	-1	1 0000	1230	704	0.220	5	1
0.4980	1994	734	0.305	1	-1	1.0000	1215	704			
0.0010	1254	104	0.000	7	1						
				В	enzene (1) +	Decylami	ne (2)				
0.0000	1350	698				0.5993	1305	719	0.452	7	-4
0.2011	1337	705	0.215	2	$^{-1}$	0.7973	1290	719	0.391	5	-3
0.3988	1322	712	0.366	5	-3	1.0000	1279	704			
0.4963	1314	716	0.420	6	-3						
				Be	nzene (1) + T)odecvlam	ine (2)				
0.0000	1380	661		Бе		0.6046	1322	699	0 574	10	7
0.2072	1364	672	0.290	3	-2	0.7998	1299	709	0.502	Ĩq	-6
0.4348	1342	686	0 495	7	-5	1 0000	1279	704	0.002	3	U
0.5228	1332	693	0.557	8	-6	1.0000	1210	101			

the apparatus and procedure have been described previously (16-18). The values of the speeds of sound U and densities ϱ were reproducible to within $\pm 1.0 \text{ m} \text{s}^{-1}$ and $\pm 0.1 \text{ kg} \text{m}^{-3}$, respectively. The isentropic compressibilities K_{S} determined from the relation $K_{\text{s}} = 1/(U^2 \varrho)$ are believed to be reliable to within 1.0 TPa⁻¹.

Results and Discussion

The speed of sound U, isentropic compressibility $K_{\rm S}$, excess volume $V^{\rm E}$, excess isentropic compressibility $K_{\rm S}^{\rm E}$, and deviation in the speed of sound ΔU for the present binary mixtures are given in Table 2. $V^{\rm E}$ and $K_{\rm S}^{\rm E}$ in each

mixture were calculated from

$$Y^{\rm E} = Y - Y^{\rm id} \tag{1}$$

where Y is either V or $K_{\rm S}$.

The $V^{\rm id}$ for an ideal mixture was calculated from the usual relation

$$V^{\rm id} = \sum x_i V_i^{\circ} = \sum x_i M_i / \varrho_i \tag{2}$$

while $K_{\rm S}^{\rm id}$ for an ideal mixture was calculated from the relations recommended by Benson and Kiyohara (19),

Tamura, Ohomuro, and Murakami (20), and Douheret, Moreau, and Viallard (21):

$$K_{\rm S}^{\rm id} = K_{\rm T}^{\rm id} - TV^{\rm id} (\alpha^{\rm id})^2 / C_P^{\rm id}$$
(3)

Here

$$K_{\rm T}^{\rm id} = \sum \phi_i [K^\circ_{\rm S,i} + TV_i^\circ(\alpha_i^\circ)^2 / C^\circ_{P,i}]$$
(4)

$$\alpha^{\rm id} = \sum \phi_i \alpha_i^{\,\circ} \tag{5}$$

and

$$C_P^{\rm id} = \sum x_i C_{P,i}^{\circ} \tag{6}$$

The deviations in the speeds of sound from their values in an ideal mixture ΔU were calculated following Douheret et al. (22):

$$\Delta U = U - U^{\rm id} \tag{7}$$

where

$$U^{\rm id} = V^{\rm id} / (K_{\rm S}^{\rm id} \sum_{i} x_i M_i)^{1/2}$$
(8)

In eqs 2–6, V_i° , α_i° , and $C^{\circ}_{P,i}$ are, respectively, the molar volume, isobaric thermal expansion coefficient, and molar isobaric heat capacity for pure component *i* and $\phi_i = x_i V_i^{\circ/} \sum x_j V_j^{\circ}$ is the volume fraction of *i* in the mixture, stated in terms of the unmixed components. The values of α_i° and $C^{\circ}_{P,i}$ used for these calculations are listed in Table 1.

The values of U and $K_{\rm S}$ are expressed by

$$U \text{ or } K_{\rm S} = \sum_{i=0}^{m} A_i x_1^i$$
 (9)

and of the functions $V^{\rm E}$, $K^{\rm E}_{\rm S}$, or ΔU by

$$V^{\rm E}, K^{\rm E}_{\rm S}, \text{ or } \Delta U = x_1 x_2 \sum_{i=0}^{m} A_i (1 - 2x_1)^i$$
 (10)

The coefficients A_i of eqs 9 and 10 obtained by the leastsquares method together with the standard deviations Sare given in Table 3. The dependence of K_S , V^E , and K^E_S on composition is shown in Figures 1–6, while the variation of V^E and K^E_S at equimolar composition with number of carbon atoms in the alkylamine is depicted in Figures 7 and 8.

The $V^{\rm E}$ values are positive for all 10 binary mixtures at 303.15 K. Present equimolar $V^{\rm E}$ values for $C_6H_{12} + C_4H_9$ -NH₂ and $C_6H_6 + C_4H_9$ NH₂ at 303.15 K are within 0.018–0.027 cm³-mol⁻¹, respectively, of those at 298.15 K reported by Letcher (11). The slight difference in the two values may be due the effect of temperature on $V^{\rm E}$. The $V^{\rm E}$ versus x_1 curves (Figures 3 and 4) are asymmetrical about $x_1 = 0.5$, and maxima are inclined toward the cyclohexane or benzene rich region. The maximum shifts from $0.57x_1$ to $0.65x_1$ as the number of carbons in the *n*-alkyl chain of the amine is increased from 4 to 12. The asymmetry of the curves may originate from the self-association in the primary alkylamine.

Figure 7 reveals that $V^{\rm E}$ increases as the chain length of the alkylamine is increased in benzene + alkylamine mixtures while the reverse is the case of cyclohexane + alkylamine. The excess volumes $V^{\rm E}$ for all five binary mixtures of the primary amines (butyl to dodecyl) with benzene are smaller than the corresponding cyclohexane

Table 3. Coefficients A_i and Standard Deviations S for Eqs 9 and 10 for the Binary Mixtures at 303.15 K

property	A_0	A_1	A_2	A_3	\boldsymbol{S}			
Cyclohexane (1) + Butylamine (2)								
$U/(\text{m}\cdot\text{s}^{-1})$	1126.3	-70.8	4.1	70.3	0.8			
$K_{\rm S}/{\rm TPa^{-1}}$	912.9	74.3	-12.9	-115.3	1.1			
$V^{E}/(cm^{-1}mol^{-1})$	3.397	-0.899	0.636		0.001			
$K_{\rm S}/TPa^{-1}$	104.9	-41.8	24.0		1.0			
$\Delta U/(\text{m-s}^{-})$	-104.3	30.4	- · ·		0.9			
C	yclohexan	e(1) + He	xylamine	(2)	1.0			
$U/(\text{m}\cdot\text{s}^{-1})$	1285.2	-88.0	48.0	80.4	1.2			
$VE/(cm^{3}mol^{-1})$	800.2	100.8	107.2	-148.5	1.8			
V^{E}/TDo^{-1}	2.710	-51.8	35.0		0.005			
ΛS^{II} (m·g ⁻¹)	-51.8	22.6	26.5		1.7			
	01.0	(1) 0	20.0		1.2			
$U/(meg^{-1})$	Jyclonexar	1e(1) + Oc	tylamine	(2)	1.0			
$U/(\text{ms}^2)$ $K_0/\text{TP}_0 = 1$	1326.7	-139.0 137.0	39.4 61.0	79 1	1.2			
$V^{E/(cm^{3}mol^{-1})}$	2 473	-1.097	-0.144	12.1	0.0			
$\mathbf{k}^{\mathbf{E}}/\mathbf{TD}_{\mathbf{n}}^{-1}$	52.0	-20.3	-91.8		0.004			
ΛS^{II} (m·s ⁻¹)	-23.1	30	19.4		0.5			
AU/(III3)	20.1		10.4	()	0.0			
(////////////////////////////////////	yclohexar	10 (1) + De	cylamine	(2)				
$U/(\text{m}\cdot\text{s}^{-1})$	1350.0	-101.4	-19.0		1.0			
$N_S/1Pa + VE/(am 3mm al - 1)$	097.8	117.3	40.0		1.7			
$\sqrt{I/(me^{-1})}$	2.010	-1.150	0.237		0.005			
20/(III-S)	11.0				1.0			
Су	clohexane	(1) + Dod	lecylamine	e(2)				
$U/(\text{m}\cdot\text{s}^{-1})$	1379.6	-88.1	-61.4		0.6			
K_{S}/TPa^{-1}	661.Z	101.1	64.3	32.8	0.9			
$v^{2}/(\text{cm}^{-1}\text{mol}^{-1})$	2.170	-1.300	0.555		0.006			
K_{s}/TPa^{-1}	-24.7	12.3			0.3			
$\Delta U/(\text{m}\cdot\text{s}^{-1})$	31.3	-13.6			0.7			
	Benzene	(1) + Buty	lamine (2))				
$U/(\text{m}\cdot\text{s}^{-1})$	1227.6	10.3	40.3		0.7			
$K_{\rm S}/T{\rm Pa}^{-1}$	910.0	-169.5	-36.5		1.1			
$V^{E}/(\text{cm}^{3}\text{mol}^{-1})$	1.040	-0.398	0.257		0.001			
	Benzene	(1) + Hexy	lamine (2)				
$U/(\text{m}\cdot\text{s}^{-1})$	1285.6	-16.0	-35.5	44.7	0.4			
$K_{\rm S}/{\rm TPa^{-1}}$	799.3	-59.7	39.0	-74.5	0.4			
$V^{E}/(\text{cm}^{3}\text{mol}^{-1})$	1.318	-0.595	0.065		0.006			
$K_{\rm S}^{\rm E}/{\rm TPa}^{-1}$	12.6	-9.3			1.1			
Benzene (1) + Octylamine (2)								
$U/(\text{m}\cdot\text{s}^{-1})$	1326.5	-39.6	-51.3	43.1	0.7			
$K_{\rm S}/{\rm TPa^{-1}}$	733.8	-5.4	63.8	-87.4	1.1			
$V^{\mathbf{E}/(\mathbf{cm^{3} mol^{-1}})}$	1.443	-0.842	0.617		0.004			
$K_{\rm S}^{\rm E}/{\rm TPa}^{-1}$	18.4	7.5			1.1			
Benzene (1) + Decvlamine (2)								
$U/(m \cdot s^{-1})$	1349.9	-49.8	-71.8	50.6	0.3			
Ks∕TPa⁻¹	698.3	11.5	105.2	-110.7	0.9			
V ^E /(cm ³ ·mol ⁻¹)	1.685	-0.906	0.549		0.001			
$K_{\rm S}^{\rm E}/{ m TPa^{-1}}$	23.5	-16.0			0.4			
$\Delta U/(\text{m}\cdot\text{s}^{-1})$	-13.2	10.4			0.3			
Benzene (1) + Dodecvlamine (2)								
$U/(m \cdot s^{-1})$	1379.8	-54.3	-100.8	54.1	0.6			
$K_{\rm S}/{\rm TPa^{-1}}$	661.5	17.4	148.9	-123.3	1.5			
$V^{E/(cm^{3}\cdot mol^{-1})}$	2.153	-1.139	0.820	0.006	0.006			
$K_{\rm S}^{\rm E}/{ m TPa^{-1}}$	34.5	-32.3			0.7			
$\Delta ar{U}/(\mathrm{m}\cdot\mathrm{s}^{-1})$	-24.1	21.7			0.2			

series. Thus, by replacing benzene for cyclohexane in the binary mixture, the values of $V^{\rm E}$ are reduced, and this reduction clearly supports π -n interaction between benzene and the primary amine (3, 11).

The values of $K_{\rm S}^{\rm E}$ (Figures 5 and 6) are positive for all the mixtures except for $C_6H_{12} + C_{10}H_{21}NH_2$ and $C_6H_{12} + C_{12}H_{25}NH_2$. For the latter mixture $K_{\rm S}^{\rm E}$ is slightly negative. The maximum/minimum in the $K_{\rm S}^{\rm E}$ curves is in the range 0.55–0.70 mole fraction of the first component for most mixtures. The maximum/minimum generally shifts toward higher x_1 as the alkyl chain length in the amine is increased. Thus, the sign and magnitude of $K_{\rm S}^{\rm E}$ are dependent on the size of the alkylamine molecules and the type of solvent used. In the case of mixtures with benzene, the values of $K_{\rm S}^{\rm E}$ marginally increase with the chain length of the alkylamines (Figure 8) while there is a substantial decrease in $K_{\rm S}^{\rm E}$ from large positive to negative values in the case of mixtures involving cyclohexane. Further, it is noticed that the order of magnitudes of K_{s}^{E} for the present mixtures is roughly the same as that of V^{E} though values of $K_{\rm S}^{\rm E}$ are not strictly proportional to the values of $V^{\rm E}$. This behavior qualitatively reflects the differences in the molecular interactions of the component molecules.

Literature Cited

- Oswal, S. L.; Rao, A. V. Indian J. Chem. 1985, 24A, 1024.
 Oswal, S. L.; Patel, A. T. Int. J. Thermophys. 1991, 12, 1821.
 Oswal, S. L.; Patel, A. T. Int. J. Thermophys. 1992, 13, 629.
 Oswal, S. L.; Patel, S. G. Int. J. Thermophys. 1992, 13, 801.
 Oswal, S. L.; Patel, S. G. Int. J. Thermophys. 1992, 13, 817.
 Patel, S. G.; Oswal, S. L. J. Chem. Soc., Faraday Trans. 1992, 8207 88, 2497
- (7) Oswal, S. L.; Patel, S. G. J. Chem. Soc., Faraday Trans. 1994, 90, 1083.
- (8) Oswal, S. L.; Patel, A. T. J. Chem. Eng. Data 1994, 39, 366.
 (9) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents Physical Properties and Methods of Purifications, 4th ed.;
- Wiley-Interscience: New York, 1986.
 (10) Letcher, T. M.; Bayles, J. W. J. Chem. Eng. Data 1971, 16, 266.
 (11) Letcher, T. M. J. Chem. Thermodyn. 1972, 4, 159, 551.
 (12) Krishnaiah, A.; Naidu, P. R. Acta Chem. Acad. Sci. Hung. 1980,
- 104. 295.

- (13) Fernandez, J.; Velasco, I.; Otin, S. Int. Data Ser., Sel. Data Mixtures 1990, A3, 166, 172, 178, 184, 190.
- Costello, J. M.; Bowden, S. T. Recl. Trav. Chim. Pays-Bas 1970, (14)78. 391.
- Weast, R. C. Handbook of Chemistry and Physics, 59th ed.; (15)Chemical Rubber Co.: Cleveland, OH, 1979.
- (16) Oswal, S. L.; Rathnam, M. V. Can. J. Chem. 1984, 62, 2851.
- (17) Patel, A. T. Ph.D. Thesis, South Gujarat University, Surat, 1991.
- (18) Oswal, S. L.; Palsanawala, P. P. Acoust. Lett. 1989, 13, 66.
- (19) Benson, G. C.; Kiyohara, O. J. Chem. Thermodyn. 1979, 11, 1061.
- Tamura, K.; Ohomuro, K.; Murakami, S. J. Chem. Thermodyn. (20)1983, 15, 859.
- (21) Douheret, G.; Moreau, C.; Viallard, A. Fluid Phase Equilib. 1985, 22, 277.
- (22) Douheret, G.; Pal, A.; Davies, M. I. J. Chem. Thermodyn. 1990, 22, 99.
- (23) Tamura, K.; Murakami, S. J. Chem. Thermodyn. 1984, 16, 33.
- (24) Sindhe, R. G. M.Phil. Thesis, South Gujarat University, Surat, 1991.
- (25) Patel, S. G. Ph.D. Thesis, South Gujarat University, Surat, 1991.
- (26) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. The Properties of Gases and Liquids, 4th ed.; McGraw-Hill International: New York, 1987.

Received for review May 16, 1994. Accepted August 28, 1994. $^{\circ}$ A.T.P. thanks the Government of Gujarat for the award of a research fellowship during the course of this work.

JE940093Y

* Abstract published in Advance ACS Abstracts, November 15, 1994.